

Transcriptome analysis of shrimps

Anchalee Tassanakajon

Center of Excellence for Molecular Biology and Genomics of Shrimp,
Department of Biochemistry, Faculty of Science,
Chulalongkorn University, THAILAND

Two major farmed species

Black Tiger Shrimp
 Penaeus monodon

• Pacific White Shrimp Litopenaeus vannamei

Nucleotide sequences of shrimps submitted in GenBank

31 August, 2013

Species	Nucleotide: DNA and RNA sequences	GSS: genome survey sequences	EST: expressed sequence tag	Total
Litopenaeus vannamei	76,444	229	162,933	239,606
Penaeus monodon	67,083	21,124	39,908	128,115
Fenneropenaeus chinensis	510	19	10,512	11,041
Marsupenaeus japonicus	1,013	258	3,783	5,054
Litopenaeus setiferus	225	-	1,059	1,284
Total	145,275	21,630	218,195	385,100

Penaeus monodon Transcriptome

12,182 unique ESTs

109,679 unique sequences from RNA Seq

clustering

88,131 unique sequences

16,521 known genes 71,880 unknown genes

Sequence length (bp)

Number of sequences

Species distribution

Daphnia pulex

Drosophila melanogaster

Microarray analysis of black tiger shrimp hemocyte after pathogen infections

Control shrimp: Diluent medium

Experimental shrimp: WSSV, YHV, *V. harveyi*

Sampling at 6, 24 and 48 hours interval after injection

cDNA synthesis and labelling with fluorescence

Shrimp cDNA microarray slide

Expression profiling of genes responded to pathogen infections

Pathogen-induced genes: WSSV-YHV

AMP

High induction at 6 hpi

ALF

Penaeidin

Crustin

High induction at both early and late infection stages

c-type lectin

c-type lectin receptor

Chitin binding lectin

Ficolin

Thrombospondin

Proteinase & their inhibitor

Serine protease

Cysteine protease

Zinc metalloprotease

Meprin A metalloprotease

Legumain

EB module family protein

Kazal type proteinase inhibitor

Protease inhibitor

Serine protease inhibitor

Alpha 2 macroglobulin

Defense & homeostasis

ProPO

Prophenoloxidase activating

factor III

Serpin peptidase inhibitor

Pacifastin

Serpin 12

Chaperone

Heat shock

Chaperonin

Dnak protein

Detoxification

SOD

Glutathione s transferase

High induction

at late infection

stages

Metallothionine

Clotting protein

Transglutaminase

Coagulation factor vIII

High induction at both early and late infection stages

Others

Laccase

Agglutinin

Thymosin

Mucin

Hemomucin

PMAV

Single whey acidic protein

Syntenin

Y-interferon

High induction at 6 hpi

RNA-Seq

The use of next-generation sequencing technology to compare the transcriptome of shrimp resistant and susceptible to Taura syndrome virus (TSV)

Shrimp samples

obtained from SyAqua Siam Co., Ltd TSV-Resistant lines: R1, R2, R3 and R4 TSV-Susceptible lines: S1, S2, S3, and S4

Sequencing of short expressed reads from L.vannamei hemocyte

	TSV-resistant	TSV-susceptible		
	shrimp	shrimp		
No. of reads	201,064,238	177,287,468		
Average read length (bp)	100	100		
Number of reads after	193,608,168	171,229,468		
trimming				
Percentage retained	96.29%	96.58%		
Average read length after	90.9	90.9		
trimming (bp)				

- > A total of 378 million reads were generated.
- ➤ Low-quality sequences (quality scores <20) and short reads sequences less than 30 bp were removed.
- > A total of 364 million remaining high-quality sequences (96.4%) were preserved and carried forward for assembly and analysis.

Differentially expressed genes in hemocyte of TSV-resistant and susceptible *L. vannamei*

	No. of differentially expressed contigs*		
Up-regulated	877		
Down-regulated	497		
Total	1,374		

- From 61,637 unique genes, 1,374 exhibited significant differentially expressed profile.
- BLAST search against NCBI database (E-value □1e-5,) revealed 698 known genes (50%)

^{*}TSV- susceptible shrimps were used as the control group.

Differentially expressed genes blasted against artemia genome

From 1374 contigs;

184 of the 1374 seq show homology with threshold value E-10 142 of the 1374 seq show homology with threshold value E-15 109 of the 1374 seq show homology with threshold value E-20

ID A	Accession		Fold Change	size	Max	
	NO.	Description	Fold Change	(bp)	ident	E value
2558302	EFX74517.1 hyp	othetical protein DAPPUDRAFT_307174 [Daphnia pulex]	7.82	817	28%	5.00E-06
2710986	EFX75090.1 hyp	othetical protein DAPPUDRAFT_306915 [Daphnia pulex]	5.35	3307	30%	1.00E-07
1851079	EFX68432.1 hyp	othetical protein DAPPUDRAFT_114543 [Daphnia pulex]	2.98	661	38%	0.092
2733200	EFX74605.1Shn	zinc finger protein [Daphnia pulex]	1.72	2045	67%	1.00E-86
247657	EFX87746.1 hyp	othetical protein DAPPUDRAFT_22032 [Daphnia pulex]	1.56	291	45%	5.00E-14
2665131	EFX70702.1 hyp	othetical protein DAPPUDRAFT_30436 [Daphnia pulex]	-1.69	400	35%	7.00E-04
2733427	EFX78111.1Sep	tin-4-like protein [Daphnia pulex]	-1.84	1385	28%	5.00E-39
	put	ative MCM3, Minichromosome maintenance complex				
2318977	EFX79105.1 com	ponent 3 [Daphnia pulex]	-4.09	2788	66%	0
2111954	EFX67816.1 hyp	othetical protein DAPPUDRAFT 330617 [Daphnia pulex]	-4.56	642	46%	0.02

Putative immune pathway involved in resistance to TSV in *L. vannamei*

Proposed collaborative work

- To search for gene homology between shrimp and artemia
- To identify some pathways that might be shared by the two species
- To study gene function using artemia as a model organis
 m

Thank you